

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY

9701/43 May/June 2016

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	43

Question	Answer	Marks
1 (a) (i)	$Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O$	[1]
(ii)	$Ba(OH)_2$ is soluble, OR $BaCO_3$ is insoluble	[1]
(iii)	$Mg(OH)_2$ is insoluble / not very soluble will not form ppt. of $MgCO_3$	[1] [1]
(b)	carbonates are more stable down the group due to increase in cationic size/radius (causing) less polarisation of CO_3^{2-} ion	[1] [1] [1]
(c)	radius of Ni ²⁺ = 0.070 nm; radius of Ca ²⁺ = 0.099 nm so NiCO ₃ decomposes more readily than CaCO ₃	[1] [1]
		[Total: 9]
2 (a) (i)	Co: $3s^{2}3p^{6}3d^{7}4s^{2}$ Co ²⁺ : $3s^{2}3p^{6}3d^{7}$	[1]
(ii)	solution starts pink turns blue pink is $[Co(H_2O)_6]^{2+}$ blue is $[CoCl_4]^{2-}$ this complex is tetrahedral	[1] [1] [1] [1] [1]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	43

Question	Answer	Marks
(b)	$\begin{array}{c} R_{3}P_{M_{M_{n_{n_{n_{n_{n_{n_{n_{n_{n_{n_{n_{n_{n_$	[1] [1] [1]
		[Total: 9]
3 (a)	$K_{p} = \{p(CS_{2}) \times (p(H_{2}))^{4}\} / \{(p(H_{2}S))^{2} \times p(CH_{4})\}$ units: atm ² OR Pa ²	[1] [1]
(b) (i)	$p(H_2S) = 196 atm$ $p(H_2) = 8 atm$	[1] [1]
(ii)	$K_{\rm p} = (2 \times 8^4) / (196^2 \times 98) = 2.176 \times 10^{-3}$	[1]
(c) (i)	ΔS° will be positive, because more gas moles on the RHS/products	[1]
(ii)	$\Delta S^{e} = (\Delta H^{e} - \Delta G^{e})/T = (241 - 51)/1000 = 0.19 \text{ OR } 190$ kJ mol ⁻¹ K ⁻¹ OR J mol ⁻¹ K ⁻¹	[1] [1]
(d)	ΔG^{e} will become less positive/more negative as <i>T</i> increases, because ΔS^{e} is positive (<i>or</i> $-T\Delta S^{\text{e}}$ is more negative) therefore the reaction becomes more feasible/spontaneous as <i>T</i> increases	[2]
		[Total: 10]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	43

Question	Answer	Marks
4 (a) (i)	SCP is the EMF/potential of a cell composed of two electrodes (OR half cells) under standard conditions (OR at 289 K OR 1 mol dm^{-3})	[1]
(ii)	voltmeter and salt bridge	[1]
(iii)	 A is Ag B is Ag⁺(aq) or AgNO₃(aq) C is Pt D is Fe²⁺(aq) and Fe³⁺(aq) (combination of A and B can be reversed with combination of C and D) 	[3]
(b) (i)	$Ag^+ + Fe^{2+} \longrightarrow Ag + Fe^{3+}$	[1]
(ii)	$E = E^{\circ} + 0.059 \log [Ag^{+}] = 0.80 - 0.03 = 0.77 V$ so $E_{cell} = 0.77 - 0.77 = 0.0 V$	[1] [1]
		[Total: 8]
5 (a) (i)	$pK_a = -log K_a$	[1]
(ii)	diacids are more acidic than CH ₃ CO ₂ H HO ₂ C– group is electron-withdrawing, stabilising the monoanion OR HO ₂ C– group is electron-withdrawing, weakening the O–H bond	[1]
	OR monoanion is stabilised by H–bonding as n increases, the electron–withdrawing group is further away from the ionising CO ₂ H group OR the (intervening) alkyl groups destabilise the anion	[1] [1]
(iii)	removing H^{+} from an anion is not electrostatically favourable	[1]
(b) (i)	a solution which <i>resists</i> changes in pH when <i>small</i> amounts of H ⁺ or OH ⁻ are added	[1] [1]

Page 5

	Syllabus	Paper
l – May/June 2016	9701	43

Question	Answer	Marks
(ii)	$\begin{array}{rcl} HO_2CCH_2CH_2CO_2Na \ + \ H^{+} \ \rightarrow \ HO_2CCH_2CH_2CO_2H \ + \ Na^{+} \\ HO_2CCH_2CH_2CO_2Na \ + \ NaOH \ \rightarrow \ NaO_2CCH_2CH_2CO_2Na \ + \ H_2O \end{array}$	[1] [1]
		[Total: 9]
6 (a) (i)	$C_6H_5NO_2 + 6e^- + 6H^+ \longrightarrow C_6H_5NH_2 + 2H_2O$	[1]
(ii)	$\mathbf{2C}_{6}H_{5}NO_{2} + 14HCl + 3Sn \rightarrow \mathbf{2C}_{6}H_{5}NH_{3}Cl + 3SnCl_{4} + 4H_{2}O$	[2]
(b)	(M_r values: $C_6H_5NO_2 = 123 C_6H_5NH_3Cl = 129.5$) theoretical yield = $5.0 \times 129.5/123 = 5.26$ g percentage yield = $100 \times 4.2/5.26 = 79.8\%$ (80%)	[1] [1]
(c) (i)	$C_6H_5NH_2 = 93$ yield of phenylamine = $4.2 \times 93/129.5 = 3.016$ g	[1]
(ii)	mass left in water = $3.016 - 2.68 = 0.336$ g $K_{part} = (2.68/50)/(0.336/25) = 3.99$	[1] [1]
(d)	phenylamine is less basic that ethylamine the lone pair on N is delocalised over the ring making it less available for reaction with a proton/ δ + H	[2]
(e) (i)	step 1: $HNO_2 OR (NaNO_2 + HCl)$ at $T \le 10 °C$ step 2: boil/heat in water	[1] [1]
(ii)	E is $N \equiv N$ (Cl ⁻)	[1]
		[Total: 13]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	43

Question	Answer	Marks
7 (a) (i)	$\begin{array}{cccc} CH_3 & O \\ H & H & H \\ CH & CH & N \\ CH & CH & N \\ H_2 & CH & CH_2 \\ H & H & CO_2H \\ O & CH_2OH \end{array}$	[2]
(ii)	<i>M</i> _r = 233	[1]
(b) (i)	$NH_2CH(CH_2OH)CO_2^-$	[1]
(ii)	 F is a DC power supply G is the anode OR positive electrode I is the cathode OR negative electrode H is filter paper (OR gel) soaked in buffer solution 	[4]
(iii)	P is $NH_2CH_2CO_2^-$ or $NH_2CH_2CO_2H$ or glycine S is $[ala-ser-gly]^{(-)}$ glycine is the smallest, so travels fastest; tripeptide is the largest, so travels slowest	[1] [1] [1]
(c) (i)	heat with H_3O^+ OR heat with $OH^-(aq)$	[1]
(ii)	hydrolysis	[1]
		[Total: 13]
8 (a)	$\Delta H = [2(-580) + 3(-286) + 3(-1438)] - [-2061 + 4(-437) + 3(-814)]$ = -81 kJ mol ⁻¹	[2]
(b) (i)	cis-trans OR geometrical	[1]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	43

Question	Answer	Marks
(ii)	in a complex the d–orbitals are split into 2 energy levels colour is due to absorption of light (in visible region) electron promotion to higher orbital absorbs a photon the d–d energy gap is different for the two complexes, hence different colours	[1] [1] [1] [1]
		[Total: 7]
9 (a)	T is U is U is U	[1] [1]
(b)	step 1: $C_6H_5COCl + AlCl_3$ (+ heat) step 2: $CH_3CH_2Cl + AlCl_3$ (+ heat) step 3: Br_2 + light (<i>or</i> heat) step 4: KCN + heat (in ethanol) step 5: H_3O^+ OR H^+ in H_2O OR HCl (aq) etc AND heat/boil/reflux	[1] [1] [1] [1] [1]
(c)	 step 1: electrophilic substitution OR nucleophilic substitution step 5: hydrolysis OR nucleophilic substitution 	[1] [1]
		[Total: 9]
10 (a)	$\begin{array}{rcl} n(MnO_4^{-}) &=& 0.02 \times 15.2/1000 \ =& 3.04 \times 10^{-4} \ mol \\ n(C_2O_4H_2) &=& 3.04 \times 10^{-4} \times 5/2 \ =& 7.6 \times 10^{-4} \ (in \ 25 \ cm^3) \ =& 3.04 \times 10^{-3} \ mol \ in \ 100 \ cm^3 \\ M_r \ =& 24 + 64 + 2 \ =& 90 \end{array}$	[1]
	mass of $C_2O_4H_2 = 3.04 \times 10^{-3} \times 90$ = 0.2736 g (0.274) percentage = 0.2736 × 100/40 = 0.68%	[1] [1]
(b) (i)	$SOC l_2 \text{ or } PC l_5 \text{ or } PC l_3$	[1]

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9701	43

Question	Answer	Marks
(ii)	J is CH ₃ OCO–COOCH ₃ K is O HN NH	[1]
		[1]
(c) (i)	CH ₃ at δ 15 CH ₂ O at δ 65	[1] [1]
(ii)	Only one peak, so only one type/environment of C atom	[1]
(d) (i)		[3]
(ii)	L is $0 - 0 - 0 - 0$ 0 - 0 - 0 - 0	[1]
		[Total: 13]